PHY, MAC 及 MII

以太网(Ethernet)是一种计算机局域网组网技术,该技术基于IEEE制定的IEEE 802.3标准,它规定了包括物理层的连线、电信号和介质访问层协议的内容。
  以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。

  历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。

  基于以太网的应用一定时期内是研究开发热点。

 

  ETHERNET的接口实质是MAC通过MII总线控制PHY的过程。

 

  MACMedia Access Control 的缩写,即媒体访问控制子层协议

  该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质。

  在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层。

  在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC层。

  以太网MAC由IEEE-802.3以太网标准定义。

 

  MIIMedia Independent Interface,即媒体独立接口

  “媒体独立”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。

  MII数据接口总共需要16个信号,包括TX_ERTXD<3:0>TX_ENTX_CLKCOLRXD<3:0>RX_EXRX_CLKCRSRX_DV等。

  MII以4位半字节方式传送数据双向传输,时钟速率25MHz。其工作速率可达100Mb/s。

 

  MII管理接口是个双信号接口,一个是时钟信号,另一个是数据信号

  通过管理接口,上层能监视和控制PHY,其管理是使用SMI(Serial Management Interface)总线通过读写PHY的寄存器来完成的。

  PHY里面的部分寄存器是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度双工的能力等。

  当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭自协商模式还是强制模式等。

  不论是物理连接的MII总线和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。

 

  PHY是物理接口收发器,它实现物理层。

  包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。

 

  100BaseTX采用4B/5B编码

 

  PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则把数据编码,再变为模拟信号把数据送出去。

  收数据时的流程反之。

 

  PHY还有个重要的功能就是实现CSMA/CD的部分功能。

  它可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去。如果两个碰巧同时送出了数据,那样必将造成冲突,这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据。这个随机时间很有讲究的,并不是一个常数,在不同的时刻计算出来的随机时间都是不同的,而且有多重算法来应付出现概率很低的同两台主机之间的第二次冲突。

 

  通信速率通过双方协商,协商的结果是两个设备中能同时支持的最大速度和最好的双工模式,这个技术被称为Auto Negotiation或者NWAY

 

  隔离变压器PHY送出来的差分信号差模耦合的线圈耦合滤波增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。

 

  RJ-45中1、2是传送数据的,3、6是接收数据的。

  新的PHY支持AUTO MDI-X功能,也需要隔离变压器支持,它可以实现RJ-45接口的1、2上的传送信号线和3、6上的接收信号线的功能自动互相交换

没有评论: